ATmega128
SS Pin
Functionality
Slave Mode
Master Mode
W hen the SPI is configured as a slave, the Slave Select (SS) pin is always input. W hen SS is
held low, the SPI is activated, and MISO becomes an output if configured so by the user. All
other pins are inputs. W hen SS is driven high, all pins are inputs except MISO which can be user
configured as an output, and the SPI is passive, which means that it will not receive incoming
data. Note that the SPI logic will be reset once the SS pin is driven high.
The SS pin is useful for packet/byte synchronization to keep the slave bit counter synchronous
with the master clock generator. W hen the SS pin is driven high, the SPI slave will immediately
reset the send and receive logic, and drop any partially received data in the Shift Register.
W hen the SPI is configured as a master (MSTR in SPCR is set), the user can determine the
direction of the SS pin.
If SS is configured as an output, the pin is a general output pin which does not affect the SPI
system. Typically, the pin will be driving the SS pin of the SPI slave.
If SS is configured as an input, it must be held high to ensure Master SPI operation. If the SS pin
is driven low by peripheral circuitry when the SPI is configured as a master with the SS pin
defined as an input, the SPI system interprets this as another master selecting the SPI as a
slave and starting to send data to it. To avoid bus contention, the SPI system takes the following
actions:
1. The MSTR bit in SPCR is cleared and the SPI system becomes a slave. As a result of the
SPI becoming a slave, the MOSI and SCK pins become inputs.
2. The SPIF flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG is
set, the interrupt routine will be executed.
Thus, when interrupt-driven SPI transmission is used in master mode, and there exists a possi-
bility that SS is driven low, the interrupt should always check that the MSTR bit is still set. If the
MSTR bit has been cleared by a slave select, it must be set by the user to re-enable SPI master
mode.
SPI Control Register –
SPCR
Bit
Read/ W rite
Initial Value
7
SPIE
R/ W
0
6
SPE
R/ W
0
5
DORD
R/ W
0
4
MSTR
R/ W
0
3
CPOL
R/ W
0
2
CPHA
R/ W
0
1
SPR1
R/ W
0
0
SPR0
R/ W
0
SPCR
? Bit 7 – SPIE: SPI Interrupt Enable
This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and the if
the global interrupt enable bit in SREG is set.
? Bit 6 – SPE: SPI Enable
W hen the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI
operations.
? Bit 5 – DORD: Data Order
W hen the DORD bit is written to one, the LSB of the data word is transmitted first.
W hen the DORD bit is written to zero, the MSB of the data word is transmitted first.
? Bit 4 – MSTR: Master/Slave Select
This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic
zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will be cleared,
166
2467X–AVR–06/11
相关PDF资料
ATMEGA64RZAPV-10AU BUNDLE ATMEGA644P/AT86RF230 TQFP
ATP101-TL-H MOSFET P-CH 30V 25A ATPAK
ATP102-TL-H MOSFET P-CH 30V 40A ATPAK
ATP103-TL-H MOSFET P-CH 30V 55A ATPAK
ATP104-TL-H MOSFET P-CH 30V 75A ATPAK
ATP106-TL-H MOSFET P-CH 40V 30A ATPAK
ATP107-TL-H MOSFET P-CH 40V 50A ATPAK
ATP108-TL-H MOSFET P-CH 40V 70A ATPAK
相关代理商/技术参数
ATMEGA128RFA1-ZUR SL514 制造商:Atmel Corporation 功能描述:
ATMEGA128RFA1-ZUR00 制造商:Atmel Corporation 功能描述:2.4GHZ 802.15.4 128K SOC REVF 制造商:Atmel Corporation 功能描述:2.4GHZ 802.15.4 128K SOC REVF T&R - Bulk 制造商:Atmel from Components Direct 功能描述:ATMEL ATMEGA128RFA1-ZUR00 MICROCONTROLLERS (MCU) 制造商:Atmel 功能描述:Atmel ATMEGA128RFA1-ZUR00 Microcontrollers (MCU) 制造商:Atmel Corporation 功能描述:MCU AVR 2.4GHZ 128K FLASH 64VQFN 制造商:Atmel Corporation 功能描述:2.4GHZ 802.15.4 128K SOC Revision F 制造商:Atmel 功能描述:2.4GHZ 802.15.4 128K SOC REVF
ATMEGA128RFR2-ZF 功能描述:IC RF TXRX+MCU 802.15.4 64-VFQFN 制造商:microchip technology 系列:- 包装:托盘 零件状态:在售 类型:TxRx + MCU 射频系列/标准:802.15.4 协议:Zigbee? 调制:DSSS, O-QPSK 频率:2.4GHz 数据速率(最大值):2Mbps 功率 - 输出:3.5dBm 灵敏度:-100dBm 存储容量:128kB 闪存,4kB EEPROM,16kB SRAM 串行接口:I2C,JTAG,SPI,USART GPIO:35 电压 - 电源:1.8 V ~ 3.6 V 电流 - 接收:5mA ~ 12.5mA 电流 - 传输:8mA ~ 14.5mA 工作温度:-40°C ~ 125°C 封装/外壳:64-VFQFN 裸露焊盘 标准包装:260
ATMEGA128RFR2-ZU 制造商:Atmel Corporation 功能描述:2.4GHZ 802.15.4 128K SOC IND 85C - Bulk
ATMEGA128RFR2-ZUR 制造商:Atmel Corporation 功能描述:2.4GHZ 802.15.4 128K SOC 85C T&R - Tape and Reel
ATMEGA128RZAV-8AU 功能描述:射频微控制器 - MCU AVR Z-Link Bundle RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:Si100x 数据总线宽度:8 bit 最大时钟频率:24 MHz 程序存储器大小:64 KB 数据 RAM 大小:4 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 85 C 封装 / 箱体:LGA-42 安装风格:SMD/SMT 封装:Tube
ATMEGA128RZAV-8MU 功能描述:射频微控制器 - MCU AVR Z-Link Bundle RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:Si100x 数据总线宽度:8 bit 最大时钟频率:24 MHz 程序存储器大小:64 KB 数据 RAM 大小:4 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 85 C 封装 / 箱体:LGA-42 安装风格:SMD/SMT 封装:Tube